

Audio Transformer

A-9J

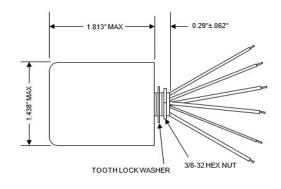
Description:

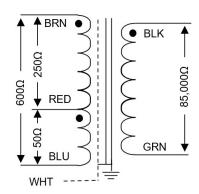
Triad's A-9J Input Transformer provides the durability and precision required in today's demanding designs. Mu-Metal case construction for magnetic field immunity and 60 to 80 dB Hum reduction. Large step-up turns ratio to couple low-level input signals to the grid of the first amplifier tube or, in a multistage system, to the input element of the first transistor amplifier. Low level High Fidelity with excellent Unwanted Noise reduction. Applications include signal pre-amplification, inter-stage isolation, signal level step up/down, and impedance matching.

Electrical Specifications (@25C)

Impedance				_
Pri (Ω)	Sec (Ω)	Overall Turns Ratio	DCR (Ω)	Power level dBm
600/250/50	85k	1:12	Brn - Red = 20.40 Red - Blu = 10.50 Grn - Blk = 3991	0

<u>PARAMETER</u>	<u>CONDITIONS</u>	<u>TYPICAL</u>		
Frequency Range		30 Hz – 15KHZ		
Gain	1kHz, Rs = 600 Ω RL = 85k Ω	+15 dB		
Distortion (THD+N%)	1kHz, +8dBu input,	0.005%		
	Rs = $600 \Omega RL = 85k\Omega$			
	1kHz, +0dBu input,	0.003%		
	Rs = $600 \Omega RL = 85k\Omega$			
	1kHz, -8dBu input,	0.002%		
1	Rs = $600 \Omega RL = 85k\Omega$			
Max input level (20Hz)	1% THD + N%,	+6.5 dBu		
	Rs= 600Ω , RL = $85k\Omega$			
Frequency response	30 Hz, RS=600Ω, RL=85kΩ	-0.30dB		
(1 kHz Ref.)	15 kHz, RS=600Ω, RL=85kΩ	-1.2dB		
Phase Shift @ 30Hz	Reference to source generator	+5°		
DI 1:0 0 45111	Rs= 600Ω , RL = 85 kHz	00		
Phase shift @ 15kHz		0°		
CMRR	Rs= 600Ω, RL = 85kHz 60 Hz 1 kHz	-88 dBu		
	1 kHz	-84 dBu		
Inductance Brn - Blu	0.77V @ 60Hz	12H Min.		
Dielectric Test	500V @ 60Hz			
Temperature Rating	Operation & Storage	0°C to 70°C		

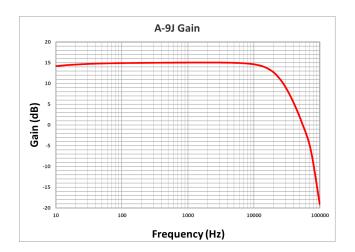

RoHS Compliance: As of manufacturing date February 2005, all standard products meet the requirements of 2011/65/EU, known as the RoHS initiative.

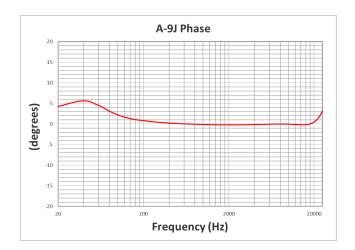

*Upon printing, this document is considered "uncontrolled". Please contact Triad Magnetics for the most current version.

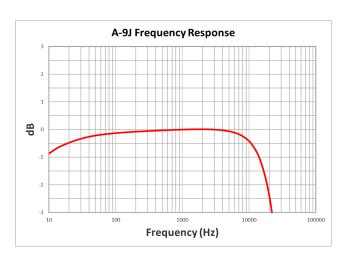
For illustration purpose only

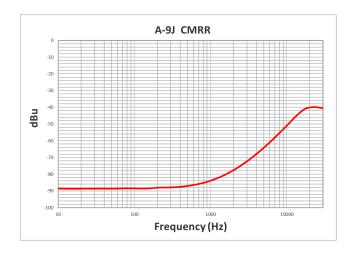
ALL LEADS = 6.0" Min

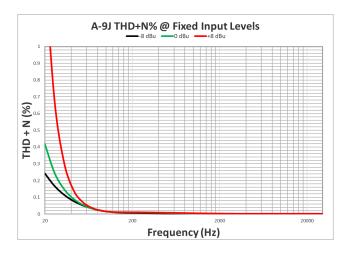
Web: www.TriadMagnetics.com

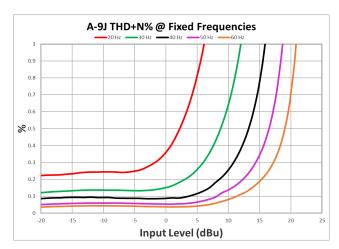

Phone 951-277-0757 Fax #: 951-277-2757


460 Harley Knox Blvd. Perris, California 92571


Publish Date: February 15, 2024




Audio Transformer



NOTE: Graph data was taken on a random sample using an Audio Precision Model APX555 Audio Analyzer.